Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Nature ; 626(7999): 555-564, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38356065

RESUMO

The possibility that the Amazon forest system could soon reach a tipping point, inducing large-scale collapse, has raised global concern1-3. For 65 million years, Amazonian forests remained relatively resilient to climatic variability. Now, the region is increasingly exposed to unprecedented stress from warming temperatures, extreme droughts, deforestation and fires, even in central and remote parts of the system1. Long existing feedbacks between the forest and environmental conditions are being replaced by novel feedbacks that modify ecosystem resilience, increasing the risk of critical transition. Here we analyse existing evidence for five major drivers of water stress on Amazonian forests, as well as potential critical thresholds of those drivers that, if crossed, could trigger local, regional or even biome-wide forest collapse. By combining spatial information on various disturbances, we estimate that by 2050, 10% to 47% of Amazonian forests will be exposed to compounding disturbances that may trigger unexpected ecosystem transitions and potentially exacerbate regional climate change. Using examples of disturbed forests across the Amazon, we identify the three most plausible ecosystem trajectories, involving different feedbacks and environmental conditions. We discuss how the inherent complexity of the Amazon adds uncertainty about future dynamics, but also reveals opportunities for action. Keeping the Amazon forest resilient in the Anthropocene will depend on a combination of local efforts to end deforestation and degradation and to expand restoration, with global efforts to stop greenhouse gas emissions.


Assuntos
Florestas , Aquecimento Global , Árvores , Secas/estatística & dados numéricos , Retroalimentação , Aquecimento Global/prevenção & controle , Aquecimento Global/estatística & dados numéricos , Árvores/crescimento & desenvolvimento , Incêndios Florestais/estatística & dados numéricos , Incerteza , Recuperação e Remediação Ambiental/tendências
2.
Sci Total Environ ; 843: 157106, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35779719

RESUMO

Climate projections models indicate that longer periods of droughts are expected within the next 100 years in various parts of South America. To understand the effects of longer periods of droughts on aquatic environments, we investigated the response of chlorophyll-a (Chl-a) concentration to recent severe drought events in the Barra Bonita Hydroelectric Reservoir (BBHR) in São Paulo State, Brazil. We used satellite imagery to estimate the Chl-a concentration from 2014 to 2020 using the Slope Index (NRMSE of 18.92% and bias of -0.20 mg m-3). Ancillary data such as precipitation, water level and air temperature from the same period were also used. Drought events were identified using the standardized precipitation index (SPI). In addition, we computed the probability of future drought events. Two periods showed extremely dry conditions: 1) January-February (2014) and 2) April-May (2020). Both periods were characterized by a recurrence probability of 1in every 50 years. The highest correlation was observed between Chl-a concentration and SPI (-0.97) in 2014, while Chl-a had had the highest correlation with water level (-0.59) in 2020. These results provide new insights into the influence of extreme drought events on the Chl-a concentration in the BBHR and their relationship with other climate variables and reservoir water levels. Drought events imply less rainfall, higher temperatures, and atmospheric dryness, and these factors affect evaporation and the water levels in the reservoir.


Assuntos
Clorofila , Secas , Brasil , Clorofila A , Estações do Ano , Água
3.
Sci Rep ; 12(1): 457, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013448

RESUMO

Several large-scale drivers of both anthropogenic and natural environmental changes are interacting nonlinearly in the transition zone between eastern Amazonia and the adjacent Cerrado, considered to be another Brazilian agricultural frontier. Land-use change for agrobusiness expansion together with climate change in the transition zone between eastern Amazonia and the adjacent Cerrado may have induced a worsening of severe drought conditions over the last decade. Here we show that the largest warming and drying trends over tropical South America during the last four decades are observed to be precisely in the eastern Amazonia-Cerrado transition region, where they induce delayed wet-season and worsen severe drought conditions over the last decade. Our results evidence an increase in temperature, vapor pressure deficit, subsidence, dry-day frequency, and a decrease in precipitation, humidity, and evaporation, plus a delay in the onset of the wet season, inducing a higher risk of fire during the dry-to-wet transition season. These findings provide observational evidence of the increasing climatic pressure in this area, which is sensitive for global food security, and the need to reconcile agricultural expansion and protection of natural tropical biomes.

4.
Chaos ; 30(5): 053104, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32491908

RESUMO

Since 2012, the semiarid region of Northeast Brazil (NEB) has been experiencing a continuous dry condition imposing significant social impacts and economic losses. Characterizing the recent extreme drought events and uncovering the influence from the surrounding oceans remain to be big challenges. The physical mechanisms of extreme drought events in the NEB are due to varying interacting time scales from the surrounding tropical oceans (Pacific and Atlantic). From time series observations, we propose a three-step strategy to establish the episodic coupling directions on intraseasonal time scales from the ocean to the precipitation patterns in the NEB, focusing on the distinctive roles of the oceans during the recent extreme drought events of 2012-2013 and 2015-2016. Our algorithm involves the following: (i) computing drought period length from daily precipitation anomalies to capture extreme drought events; (ii) characterizing the episodic coupling delays from the surrounding oceans to the precipitation by applying the Kullback-Leibler divergence (KLD) of complexity measure, which is based on ordinal partition transition network representation of time series; and (iii) calculating the ratio of high temperature in the ocean during the extreme drought events with proper time lags that are identified by KLD measures. From the viewpoint of climatology, our analysis provides data-based evidence of showing significant influence from the North Atlantic in 2012-2013 to the NEB, but in 2015-2016, the Pacific played a dominant role than that of the Atlantic. The episodic intraseasonal time scale properties are potential for monitoring and forecasting droughts in the NEB in order to propose strategies for drought impacts reduction.

5.
Ann N Y Acad Sci ; 1472(1): 5-20, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32052870

RESUMO

Our paper reviews recent progress in the study and understanding of observed trends in extreme rainfall events in the Metropolitan Area of São Paulo (MASP). These are discussed in relation to hydrometeorological hazards that trigger natural disasters, such as flash floods, landslides, and droughts, that affect the population and local economies. A review of the most updated literature on rainfall and extremes in the MASP shows a significant increase in the total volume of rainy-season rainfall during the last seven decades. While there were practically no days with heavy rain (more than 50 mm) in the 1950s, these days have been occurring two to five times a year in the last 10 years. This, together with the inappropriate occupation of risky areas, such as slopes and banks of watercourses, leads to inundation, flooding, and landslides. Changes in extremes can be partly due to natural climate variability but can also be related to global warming and/or urbanization. There is ample evidence of an increasing risk of rainfall-related hazards in the MASP. This is particularly so for landslides in vulnerable areas. Exposure will continue to lead to risk increases. This calls for significant improvement in climate and disaster risk reduction and management efforts in the MASP region.


Assuntos
Mudança Climática , Desastres , Inundações , Chuva , Brasil , Clima , Planejamento em Desastres , Humanos
6.
An Acad Bras Cienc ; 91(suppl 1): e20170209, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29044320

RESUMO

Drought is a natural and recurrent phenomenon. It is considered 'a natural disaster' whenever it occurs in an intensive manner in highly populated regions, resulting in significant damage (material and human) and loss (socioeconomic). This paper presents the efforts developed to monitor the impact of drought in the semiarid region of Northeast Brazil. In this scope, information from different sources is compiled to support the evaluation and identification of impacted municipalities, with the main objective of supporting emergency actions to mitigate their impact. In the semiarid region of Brazil there are frequent occurrences of dry periods during the rainy season, which, depending on the intensity and duration, can cause significant damage to family-farmed crops, with a farming system characterized by low productivity indices. However, rain-fed agriculture has great economic expression and high social importance due to the region is densely occupied, and contributes to the establishment of communities in the countryside. Specifically, in the present study, the methodology adopted to monitor the impact of agricultural droughts, including an analysis of the hydrological year 2015-2016, is presented, considering different water stress indicators for the identification of the affected municipalities and assessment of the methods and tools developed.

7.
Proc Natl Acad Sci U S A ; 115(46): 11671-11679, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30397144

RESUMO

Large uncertainties still dominate the hypothesis of an abrupt large-scale shift of the Amazon forest caused by climate change [Amazonian forest dieback (AFD)] even though observational evidence shows the forest and regional climate changing. Here, we assess whether mitigation or adaptation action should be taken now, later, or not at all in light of such uncertainties. No action/later action would result in major social impacts that may influence migration to large Amazonian cities through a causal chain of climate change and forest degradation leading to lower river-water levels that affect transportation, food security, and health. Net-present value socioeconomic damage over a 30-year period after AFD is estimated between US dollar (USD) $957 billion (×109) and $3,589 billion (compared with Gross Brazilian Amazon Product of USD $150 billion per year), arising primarily from changes in the provision of ecosystem services. Costs of acting now would be one to two orders of magnitude lower than economic damages. However, while AFD mitigation alternatives-e.g., curbing deforestation-are attainable (USD $64 billion), their efficacy in achieving a forest resilience that prevents AFD is uncertain. Concurrently, a proposed set of 20 adaptation measures is also attainable (USD $122 billion) and could bring benefits even if AFD never occurs. An interdisciplinary research agenda to fill lingering knowledge gaps and constrain the risk of AFD should focus on developing sound experimental and modeling evidence regarding its likelihood, integrated with socioeconomic assessments to anticipate its impacts and evaluate the feasibility and efficacy of mitigation/adaptation options.


Assuntos
Conservação dos Recursos Naturais/economia , Agricultura Florestal/economia , Agricultura Florestal/métodos , Brasil , Mudança Climática , Simulação por Computador , Ecossistema , Florestas , Políticas , Medição de Risco/métodos , Árvores
8.
Nat Commun ; 9(1): 536, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29440640

RESUMO

Tropical carbon emissions are largely derived from direct forest clearing processes. Yet, emissions from drought-induced forest fires are, usually, not included in national-level carbon emission inventories. Here we examine Brazilian Amazon drought impacts on fire incidence and associated forest fire carbon emissions over the period 2003-2015. We show that despite a 76% decline in deforestation rates over the past 13 years, fire incidence increased by 36% during the 2015 drought compared to the preceding 12 years. The 2015 drought had the largest ever ratio of active fire counts to deforestation, with active fires occurring over an area of 799,293 km2. Gross emissions from forest fires (989 ± 504 Tg CO2 year-1) alone are more than half as great as those from old-growth forest deforestation during drought years. We conclude that carbon emission inventories intended for accounting and developing policies need to take account of substantial forest fire emissions not associated to the deforestation process.

9.
An Acad Bras Cienc ; 90(2 suppl 1): 1973-1985, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28813107

RESUMO

This study discusses the climatological aspects of the most severe drought ever recorded in the semiarid region Northeast Brazil. Droughts are recurrent in the region and while El Nino has driven some of these events others are more dependent on the tropical North Atlantic sea surface temperature fields. The drought affecting this region during the last 5 years shows an intensity and impact not seen in several decades in the regional economy and society. The analysis of this event using drought indicators as well as meteorological fields shows that since the middle 1990s to 2016, 16 out of 25 years experienced rainfall below normal. This suggests that the recent drought may have in fact started in the middle-late 1990s, with the intense droughts of 1993 and 1998, and then the sequence of dry years (interrupted by relatively wet years in 2007, 2008, 2009 and 2011) after that may have affected the levels of reservoirs in the region, leading to a real water crisis that was magnified by the negative rainfall anomalies since 2010.

10.
Nature ; 453(7192): 212-5, 2008 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-18464740

RESUMO

The Amazon rainforest plays a crucial role in the climate system, helping to drive atmospheric circulations in the tropics by absorbing energy and recycling about half of the rainfall that falls on it. This region (Amazonia) is also estimated to contain about one-tenth of the total carbon stored in land ecosystems, and to account for one-tenth of global, net primary productivity. The resilience of the forest to the combined pressures of deforestation and global warming is therefore of great concern, especially as some general circulation models (GCMs) predict a severe drying of Amazonia in the twenty-first century. Here we analyse these climate projections with reference to the 2005 drought in western Amazonia, which was associated with unusually warm North Atlantic sea surface temperatures (SSTs). We show that reduction of dry-season (July-October) rainfall in western Amazonia correlates well with an index of the north-south SST gradient across the equatorial Atlantic (the 'Atlantic N-S gradient'). Our climate model is unusual among current GCMs in that it is able to reproduce this relationship and also the observed twentieth-century multidecadal variability in the Atlantic N-S gradient, provided that the effects of aerosols are included in the model. Simulations for the twenty-first century using the same model show a strong tendency for the SST conditions associated with the 2005 drought to become much more common, owing to continuing reductions in reflective aerosol pollution in the Northern Hemisphere.


Assuntos
Aerossóis/análise , Desastres/estatística & dados numéricos , Ecossistema , Poluição Ambiental/estatística & dados numéricos , Efeito Estufa , Modelos Teóricos , Árvores/fisiologia , Oceano Atlântico , Dióxido de Carbono/análise , Desastres/história , História do Século XX , História do Século XXI , Oceano Pacífico , Probabilidade , Chuva , Estações do Ano , América do Sul , Temperatura
11.
Acta amaz ; 34(4): 593-603, out.-dez. 2004. graf, mapas, tab
Artigo em Inglês | LILACS | ID: lil-512629

RESUMO

The TRMM-LBA field campaign was held during the austral summer of 1999 in southwestern Amazonia. Among the major objectives, was the identification and description of the diurnal variability of rainfall in the region, associated with the different rain producing weather systems that occurred during the January-February season. By using a network of 40 digital rain gauges implemented in the state of Rondônia, and together with observations and analyses of circulation and convection, it was possible to identify details of the diurnal cycle of rainfall and the associated rainfall mechanisms. Rainfall episodes were characterized by regimes of "low-level easterly" and "westerly" winds in the context of the large-scale circulation. The westerly regime is related to an enhanced South Atlantic Convergence Zone (SACZ) and an intense and/or wide Low Level Jet (LLJ) east of the Andes, which can extend eastward towards Rondônia, even though some westerly regime episodes also show a LLJ that remains close to the foothill of the Andes. The easterly regime is related to easterly propagating systems (e.g. squall-lines) with possible weakened or less frequent LLJs and a suppressed SACZ. Diurnal variability of rainfall during westerly surface wind regime shows a characteristic maximum at late afternoon followed by a relatively weaker second maximum at early evening (2100 Local Standard Time LST). The easterly regime composite shows an early morning maximum followed by an even stronger maximum in the afternoon.


O experimento de campo do TRMM-LBA ocorreu conteceu durante o verão austral de 1999, na região do sudeste de Amazonia. Entre os principais objetivos deste trabalho pode-se citar a identificação e descrição da variabilidade diurna da chuva nesta região, associada a diferentes fenômenos meteorológicos e sistemas de tempo que ocorreram durante o período de Janeiro-Fevereiro. Usando uma rede de 40 pluviômetros instalados no estado de Rondônia, ,juntamente com outras observações de circulação atmosférica e convecção, foi possível identificar detalhes do ciclo diurno de chuva e os mecanismos de circulação associados. Os eventos de chuva foram caracterizados por regimes de vento nos níveis baixos e no contexto da circulação de grande escala: ventos de oeste e de leste. O regime "de oeste" se associa a Zona de Convergência do Atlântico Sul (ZCAS) e a episódios intensos de jatos de baixos níveis ao leste dos Andes (LLJ), que podem estender seus efeitos até Rondônia. Episódios de eventos "de leste" se associam a sistemas meteorológicos que se propagam desde a Foz do Rio Amazonas em direção oeste (e.g. linhas de instabilidade) e podem ser acompanhados por episódios fracos de LLJ e de ZCAS. A variabilidade diurna de chuva durante episódios de circulação "de oeste" apresenta um máximo característico á tarde (1200-1400 hora local) com um máximo secundário á noite (2000-2200 hora local). O regime de circulação "de leste" mostra um máximo á tarde (1200-1400 hora local), precedido de um máximo secundário durante a madrugada (0000-0200 hora local).


Assuntos
Convecção , Ecossistema Amazônico , Equipamentos de Medição de Riscos , Precipitação Atmosférica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...